

ED-306

M.Sc. 1st Semester Examination, March-April 2021

CHEMISTRY

Paper - II

Concepts in Organic Chemistry

Time : Three Hours] [Maximum

[Maximum Marks : 80

Note : Answer **all** questions. The figures in the righthand margin indicate marks.

Unit-I

 (a) Which type of molecules exhibit delocalized bonding? Discuss the molecular orbital picture to explain delocalized bonding and aromaticity of benzene.

(b) Explain the following:

- (*i*) Aromaticity of 4π and 8π electron system 5
- (ii) Conjugation and cross conjugation 5

DRG_97(4)

(Turn Over)

		(2)		
		(<i>iii</i>) Cyclopentadienyl cation is antiaromatic while cyclopropenyl cation is aromatic <i>OR</i>	5	
	(<i>a</i>)	Explain bonding in fullerenes.	6	
	(b)	Heat of hydrogenation of cyclohexene is -28.6 k cal/mole. The observed heat of hydrogenation of benzene to cyclohexane is -49.8 k cal/mole. Find out the resonance energy of benzene.	4	
	(c)	Explain aromaticity on the basis of Huckel rule. Explain the aromaticity of azulenes.	10	
		Unit-II		
2.	(<i>a</i>)	Define conformation and configuration. Draw the various conformers of disubstituted cyclohexanes. Which conformer will be more stable and why?	8	
	(<i>b</i>)	Discuss optical activity of allenes and spiranes.	8	
	(<i>c</i>)	Explain the term chiral and achiral with suitable examples.	4	
		OR		
Explain the following terms:				
	(<i>a</i>)	Optical purity		
DRO	G_97	(Contin	nued)	

(3)

- (b) Methods of resolution
- (c) Hybridization of atoms
- (d) Synthetic organic chemistry

Unit-III

3.	(<i>a</i>)	Account for generation, structure, stability and chemical reactions of carbocations.	10
	(<i>b</i>)	Give the mechanism of Hunsdiecker reaction.	6
	(c)	Complete the following reactions and indicate reaction intermediate in each case –	4
		(<i>i</i>) $CH_3 - C = CH_2 + HBr - $	
		(<i>ii</i>) $C_6H_5 - CH = C$ CH4 + HBr - CH4	
		OR	
	(<i>a</i>)	Explain E_1 and E_2 mechanisms.	10
	(<i>b</i>)	Describe the generation and reactivity of nitrene.	5
	(<i>c</i>)	Write a note on Saytzeff's rule.	5

DRG_97(4)

(Turn Over)

(4)

Unit-IV

4.	(<i>a</i>)	Classify pericyclic reactions and explain correlation diagram taking example of 1, 3, 5 – hexatriene and 1, 3 – hexadiene	
		system.	10
	(<i>b</i>)	Explain the following: (<i>i</i>) Ene reaction	5×2
		(ii) Cope rearrangement	
		OR	
	(<i>a</i>)	Describe with suitable example of $3, 3$ and $5, 5$ – sigmatropic rearrangements.	10
	(<i>b</i>)	Explain the following: (<i>i</i>) 1, 3 dipolar cycloaddition reaction	5×2

(ii) Woodward-Hoffmann selection rule.

DRG_97(4)

620