

## ED-305

M.Sc. 1st Semester Examination, March-April 2021

#### CHEMISTRY

Paper - I

# Group Theory and Chemistry of Metal Complexes

| <i>Time</i> : Three Hours] | [Maximum      | Marks | : | 80 |
|----------------------------|---------------|-------|---|----|
|                            | [Minimum Pass | Marks | : | 16 |

**Note** : Answer **all** questions. The figures in the righthand margin indicate marks.

#### Unit-I

| 1. | ( <i>a</i> ) | Explain different types of plane of symmetry with example. | 6 |
|----|--------------|------------------------------------------------------------|---|
|    | ( <i>b</i> ) | Construct multiplication table of $C_{3\nu}$ point group.  | 8 |
|    | ( <i>c</i> ) | Explain mutual exclusion principle with example.           | 6 |
| OR |              |                                                            |   |

DRG\_42\_(3)

(Turn Over)

- (2)
- (a) Explain conjugacy relation and classes. 6
- (b) The character table of  $D_3$  point group is given below. By direct product method determine the product  $E \times E$  and reduce it into the sum of irreducible representations.

| $D_3$            | E | $2C_3$ | $3C_2$ |
|------------------|---|--------|--------|
| $\overline{A_1}$ | 1 | 1      | 1      |
| $A_2$            | 1 | 1      | -1     |
| Е                | 2 | -1     | 0      |

(c) Evaluate the products  $\sigma_v$ ,  $\sigma_y$ ' and  $C_2 \sigma_v$  for a  $C_{2\nu}$  point group.

#### 6

8

#### Unit-II

| <i>(a)</i>   | Describe ligand group orbitals and                                         |                                                                                                                                                                                                                                                                                                                                                                                                |  |
|--------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|              | symmetry matched metal atomic orbitals                                     |                                                                                                                                                                                                                                                                                                                                                                                                |  |
|              | appropriate for $\sigma$ bonding in an octahedral ML <sub>6</sub> complex. | 5                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <i>(b)</i>   | Explain uses of IR Spectra to determine                                    |                                                                                                                                                                                                                                                                                                                                                                                                |  |
|              | structure of metal carbonyls.                                              | 10                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ( <i>c</i> ) | Explain nephelauxetic effect.                                              | 5                                                                                                                                                                                                                                                                                                                                                                                              |  |
| OR           |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ( <i>a</i> ) | Using MOT explain why $F^{-}$ is a weak ligand.                            | 7                                                                                                                                                                                                                                                                                                                                                                                              |  |
| ( <i>b</i> ) | Describe preparation, properties and structure of $Ni(CO)_4$ .             | 7                                                                                                                                                                                                                                                                                                                                                                                              |  |
|              | (b)<br>(c)<br>(a)                                                          | <ul> <li>symmetry matched metal atomic orbitals appropriate for σ bonding in an octahedral ML<sub>6</sub> complex.</li> <li>(b) Explain uses of IR Spectra to determine structure of metal carbonyls.</li> <li>(c) Explain nephelauxetic effect. </li> <li>OR </li> <li>(a) Using MOT explain why F<sup>-</sup> is a weak ligand.</li> <li>(b) Describe preparation, properties and</li> </ul> |  |

DRG\_42\_(3)

(Continued)

## (3)

| (c) | Write method  | of preparation | and | structure |  |
|-----|---------------|----------------|-----|-----------|--|
|     | of dinitrogen | complex.       |     |           |  |

### Unit-III

| 3. | ( <i>a</i> ) | Describe spectrophotometric method for<br>the determination of stability constant and<br>composition of a complex. | 7   |
|----|--------------|--------------------------------------------------------------------------------------------------------------------|-----|
|    | ( <i>b</i> ) | Explain structure of isopoly and heteropoly acids of W.                                                            | 8   |
|    | (c)          | Write a short note on silicides.                                                                                   | 5   |
|    |              | OR                                                                                                                 |     |
|    | ( <i>a</i> ) | What is chelate effect? Explain the factors affecting it.                                                          | 7   |
|    | ( <i>b</i> ) | Describe classification of silicates with example.                                                                 | 7   |
|    | ( <i>c</i> ) | Write a short note on nitrides.                                                                                    | 6   |
|    |              | Unit-IV                                                                                                            |     |
| 4. | <i>(a)</i>   | Explain structure of higher boranes.                                                                               | 8   |
|    | <i>(b)</i>   | Explain structure of tetrameric phosphazenes.                                                                      | 6   |
|    | ( <i>c</i> ) | Write a short note on trinuclear,                                                                                  |     |
|    |              | tetranuclear metal clusters.                                                                                       | 6   |
|    |              | OR                                                                                                                 |     |
|    | ( <i>a</i> ) | Describe method of preparation and structure of carboranes.                                                        | 7   |
|    | <i>(b)</i>   | Explain chain catenation and heterocatenation.                                                                     | 7   |
|    | ( <i>c</i> ) | Explain structure of borazines.                                                                                    | 6   |
|    | C 43         |                                                                                                                    | 720 |

DRG\_42\_(3)

720

6