

ED-610

M.Sc. 3rd Semester Examination, March-April 2021

CHEMISTRY

Paper - III

Catalysis, Solids State and Surface Chemistry

Time : Three Hours]	[Maximum	Marks	:	80
	[Minimum Pass	Marks	:	16

Note : Answer **all** questions. The figures in the righthand margin indicate marks. Log table or nonprogrammable calculator can be used.

Unit-I

1.	<i>(a)</i>	Explain hard and soft acids and bases	
		with any two examples of each.	6
	<i>(b)</i>	What is nucleofugacity?	2
	(<i>c</i>)	Explain specific acid catalysed and base catalyzed reaction with the help of any	
		one example.	4

DRG_128_(4)

(Turn Over)

		(2)	
	(<i>d</i>)	Derive Michaelis-Menten equation for studying the kinetics of enzyme catalysed reactions.	8
		OR	
	(<i>a</i>)	Discuss the catalytic role of acid and base in the mutarotation of glucose.	6
	(<i>b</i>)	What is nucleophilicity scale?	2
	(<i>c</i>)	Explain Bronsted catalytic law.	4
	(<i>d</i>)	find out the expression for acid-base dissociations.	4
	(<i>e</i>)	What are enzyme catalysed reactions? Give any two enzyme catalysed reactions.	4
		Unit-II	
2.	(<i>a</i>)	What is surface active agents? Classify the surfactants with example of each.	10
	(<i>b</i>)	What is CMC? Discuss the thermodynamics of micellization.	6
	(<i>c</i>)	Write down Laplace equation and Kelvin equation.	4
		OR	
	(<i>a</i>)	Explain the following in very brief:	3×5
		(<i>i</i>) Micelles	
		(ii) Reverse micelles	
		(iii) Micro emulsion	
DR	G_12	18 _(4) (Contin	nued)

(3)

	(<i>b</i>)	(<i>iv</i>) Hydrophobic interaction(<i>v</i>) Mass action modelWhat is Surface energy? Explain surface tension capillary action.	5
		Unit-III	
3.	(<i>a</i>)	Explain point defect, line and plane defects.	6
	(<i>b</i>)	Write any four difference between Schottky defect and Frenkel defect.	4
	(<i>c</i>)	Explain Band theory of semiconductors.	10
		OR	
	(<i>a</i>)	Explain Non stoichiometry defects.	8
	(<i>b</i>)	Discuss the thermodynamics of Schottky and Frenkel defect.	6
	(<i>c</i>)	What are direct and indirect gap in semiconductors?	6
		Unit-IV	
4.	(a)	Write notes on the following:	8
		(<i>i</i>) Fire resistant polymers	-
		(<i>ii</i>) Liquid crystal polymers	
	(b)	Discuss the viscosity method for determining the molar mass of polymer. Why this method is called relative	Ē
		method ?	8

DRG_128_(4)

(Turn Over)

(4)

<i>(c)</i>	Equal masses of polymer molecules with	
	$M_1 = 10,000$ and $M_2 = 1,00,000$ are	
	mixed. Calculate \overline{Mn} and \overline{Mw} ?	

OR

(<i>a</i>)	Write note on electrically conducting polymers.	6
(<i>b</i>)	Find out the expressions related to calculation of average dimension of various chain structure.	8
(c)	What is osmometer? Explain any one osmometer used for determination of molar mass of polymer.	6

DRG_128_(4)

560

4